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DESIGN OF NEAR-OPTIMAL GUIDANCE LAW

FOR SPACE INTERCEPTION

Shi Xiaoping

Simulation Center,
Harbin Industrial University

ABSTRACT: The article applies an augmented-linearization

method for nonlinear systems to propose a near-optimal control

resolution method of secondary type index problems for nonlinear

systems. This method is applied to design a near-optimal

terminal guidance law for space interception. As indicated in

the simulation results, the near-optimal guidance has good

performance.

Key Words: 1. terminal guidance, 2. optimal guidance law.

I. Introduction

Classical optimal control theory has been relatively

perfect; however, many difficulties will be confronted when using

these theories to solve some concrete optimal control problems.

In particular, when a system is nonlinear, almost no analytical

form of optimal control can be attained. Therefore, it is

necessary to seek the applicable optimal control solution method

for nonlinear systems.

Based on the foregoing reasons, the article studies the

optimal control problems of a type simulation nonlinear system in

1



the secondary index significance. By applying the augmented-

linearization method for nonlinear systems, a near-optimal

control solution method is proposed. As an application example,

this near-optimal control solution was applied to design a

terminal-guidance law in space interception. With simulation

comparison against the optimal guidance law, the results show

good effects.

II. Suggestions of the Problem

Assume a nonlinear control system

X(t)=f(X(t))+BU(t),X(tO)=X.
(2-1)

In the equation, XER',UERCi1,TECt.,tQ]CR,B , B is an nxm-

dimensional constant matrix; f is a continuous function of x.

There exists an N+1 order continuous partial derivative with

respect to Xi (i=l,2,...,n) for f. N is a fixed natural number,

and it is assumed that f(O)=O. For these systems of f(O) not

equal to 0, it is very easy to transform to f(0)=0.

Now it is required to find the optimal control vector U(t)

so that the index

J= _LX (t,)SX (tf)+ _ o:.[XT(t)QX(t) +

U T (t)RU (t)]dt (2-2)

is the smallest. S, Q, and R are, respectively, the steady

weighted matrixes of nxn dimension, nxn dimension, and mxm

dimension. Moreover, S and Q are nonnegative steady matrices,

and R is a positive steady matrix.

III. Augmented Linearization of Nonlinear Systems

By introducing the row vectors of 1 to N order monomials not

related to all linearization, as derived from vector
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X=[X 1 X2 ... Xj]T from elements Xi (i=l, 2, ... , n),

(2A IX , IX 2 ,-- .. ,X 129X 1 ,X 2 , ..." ,X I , 9- " ,

Vo"T C-RTx (3-1 )

N

In the equation, L=IZ IC+,_,, and assume U=-KQ? (3-2)

In the equation, IKER-L , then Eq. (2-1) becomes

X=f(X)-BKQ4 g(K ,X) (3-3)

By deriving both sides of Eq. (3-1) with respect to t, we obtain

= [x1 ,x---,NXnN"X0
[g, (K ,X) ,g,(K ,X),'"
NX.N-lg .(K ,X)]T

aG (K 9X) (3-4)

Since the Taylor formula applies Gk(K,X) (k=l, 2, ... , L), there

is

G(KX)--G,(K,0- i+ aX,

X +'X. ajGk(K,O)

+ r. a a
(N~)1  2

a

In the equation, E(O.1)-)R , therefore Eq. (3-4) can be

written as

in the equation,
1,N +!

I_1 ar3+'"+'-.G(K .X)
ri .. r. or,'K a x'n

r!.+-3-4-,.-N+I r1 I " ! u ..

xe.} xi, (t)
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In the equation, -=OX Because when X=O, 0=0, and f(0)=O,

therefore, g(K,0)=f(0)-BKO0=0. Then from Eq. (3-4) we can see

Gk(K,O)=O, (k=l,2,..., L). Therefore, from Eq. (3-5) we know

that b(K)=O in Eq. (3-6). Therefore, we have

o(t)=A(K)Q(t)+0N+x(t) (3-7)

If we neglect the term 0 N+i(td , then

Z(t) =A (K)Z(t),Z(to) ==C(to)
(3--8)

In the equation, ZERLZ . The foregoing equation is the

augmented linear system of system (2-1) obtained with N-order

Taylor expansion.

IV. Augmented Linearized Error Analysis

There is a relationship between the status vectors of

nonlinear system (2-1) and augmented linear system (3-8)

X t) =[I... IO..(L_.)tZ(t) (4-1)

Subtract Eq. (3-8) from Eq. (3-7), and integrate, then we obtain

Q(t)--Z(t)=foH(t,)0N+,I(O)dr (4-2)

In the equation, the status transfer matrix H(t,T) satisfies

a 9 =A(K)H(t.r). (4-3a)

H(t,t)=I (4-3b)

Therefore, we can obtain the status approximate error
IX,(t) --z,(t) I< D(t) 11 X 11 N+1 (4--4)

In the equation, D(t) is
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D(t)- T t ) r=+*+,=+

j d

However, in the equation llxll is defined as

XIIxI =Sup Ixi(T ,I:
ýt.<-~t , Ki,•n)

CID... 0-- 0...0)

Assume that D(t) has a boundary in the convex domains including X

and 0, then we have

IX,(t)-Z 1 (t) 1=o( 1 II x +I" )(=1,
2, -.. ,n) (4-5)

V. Near-optimal Control of Nonlinear Systems

Eq. (3-8) can always be written as:

Z(t)=A (K)Z(t)-BKZ(t) (5-1)

In the equation, -LOJ Since Z is an approximation of 9,

Eq. (3-2) can be approximated as

U=-KZ (5-2)

Substitute the foregoing equation in Eq. (5-1) and we obtain

Z(t) =A (K)Z(t)+BU (t) (5-3)

In the equation, ZERL" , and 2(to)=[XI(to),-",x"

now the performance index (2-2) can be made equivalent to

2Z (tf)SZ(td)+ J.[ZT(E)QZt

+UT(t)RU (t3dt (5-4)

In the equation
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- s o0 -1 FQ 01S--Lo oj 'Q = Lo oj

Eqs. (5-3) and (5-4) describe a linear secondary type

optimal adjuster problem. The solution of the problem is

Eq. (5-2). In the equation, K is

K =R-'BT P (55)

and P satisfies the Riccati equation

P - -PA (K)--AT (K)P+PBR-'P-Q

(5-6)

Therefore, the near-optimal control of the original- nonlinear

equation is

U = -R-'B TPZ (5-7)

VI. In designing a terminal-guidance law for space interception,

the space interception dynamics equation in the longitudinal-

direction plane is [1]

r=V (6-Ia)

S-V-rca (6-1b)"* 2Vc. a
2V (6-- 1c)r r

In the equations, r indicates the relative distance between

interceptor and target; V stands for the relative velocity; w

indicates the angular rate of the line-of-sight; and a indicates

the dynamic acceleration of the interceptor. From the foregoing

equation, with some manipulations, we obtain

d(rVw2) 1
dt = (rVcj 2) 2-(3V'ca1+2V=a)

(6-2)

From this equation, by introducing the status variable and the

control variable, X(t)=rVO)2  (6--3a)

u(t)=3V"C.o+ZV(a (6--3b)

6



Then, Eq. (6-2) becomes a first-order nonlinear system.

x=•x--u (6-4)

In the equation, V can be considered as a constant because in the

terminal guidance phase of space interception, generally the

orbital parameters of target motion are known. The interceptor

aligns with the target in flying along the predetermined

trajectory, and the relative velocity between interceptor and

target varies little during the entire terminal-guidance phase;

fundamentally, this is a known constant.

The basis for designing the terminal-guidance law is as

follows: let the angular rate w

of the line of sight approach zero, and gradually approach the

guidance in parallel. In this article, the guidance law is

designed in this manner: first, an index is presented on the

system (6-4)
1r

J=-SX2 (t,)+ o
22

[qX'(t)+gu2 (t)]dt (6-5)

Then, the optimal control u(t) is derived so that J--->min. Then

from Eq. (6-3b), the guidance law is derived. Thus, we have w-o.

In the following, we solve for the problems (6-4) and (6-5)

for near-optimal control. Here, we take N=2. In other words,

the system (6-4) is augmented linearized as

Z = [ki k2 +VZ] Z (6-6)
[0 2kJ

In the equation, Z=[x,x 2]T. Since
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Z= [x ,X2 , L

u(t)= -KZ= -k ,x-kzX 2  (6-7)

Therefore, Eq. (6-6) can be written as

Z =A (K)Z-+Bu(-3

In the equation, the coefficient matrix

A(K =[ o ,= F-= l
LO 2kJB LO j K=

[k~k2]

By solving for the Riccati equation [2],

-- P(t) =P(t)A (K)+A t (K)P(t)-1P (t)B- Brp(t)±Q

---- f= (6-9)

In the equation,
- rq 01 - [S 01

Q-= Lo oo i- Lo ot

the derived P(t) is substituted into

K=[- O]P(t)

Finally, we obtain

kl - q

V9 (6-10a)
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2k_ _ _-q +k=vI(q-4k'p)

+ AjrT"k, / exp q -(+2k,)t
2V 2 -q±2k• 7)

./'•'+k• 1 +2k,)t
S2V:( .. + 2k ,,• x --

(6--10b)

Substitute the two foregoing equations in Eq. (6-7) and obtain

the near-optimal control of the problems (6-4) and (6-5).

Further, based on Eq. (6-3b) we can derive the near-optimal

guidance law
a(t)=--!V&t)(--2 r(tc)•(t)

k l r) *(t)V C03(t) (6 -- 1 1 )
2r

VII. Numerical Simulation

By using the following parameters as an example for

numerical simulation: S=0.4, q=0.4, g=0.2, r(O)=150km,

V=-7.5km/s, w(O)=5xl0-4 rad/s. Then the initial condition of

system (6-4) is X(O)=-281.25(m 2/s 3 [sic]). Figs. 1 and 2

indicate the solution curves of optimal control problems

(6-4) and (6-5). Solid lines represent the near-optimal control

derived by using the method in the article; the dashed lines

indicate the optimal control derived from the numerical method by

using the NPSOL software package. Curves in the figures indicate

that the near-optimal control is relatively close to the optimal

control.

Figs. 3 to 6 indicate the comparative relationship between

the near-optimal guidance law (represented by solid lines)

derived by using the method in this article, and the

corresponding optimal guidance law (represented by the dashed

lines) derived by using the NPSOL software package.
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From these figures, we can see that they are relatively

close to each between the optimal guidance law and the near-

optimal guidance law. Additionally, two physical quantities of

relative distance and relative velocity of interceptor and target

exhibit basically no difference under optimal control and near-

optimal control.

The article was received for publication on August 4, 1994.
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Fig. 1. Optimal and near-optimal status
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Fig. 2. Optimal and near-optimal control
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Fig. 3. Relative distance between interceptor and target
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Fig. 4. Relative velocity between interceptor 'and target
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Fig. 5. Variation of angular rate of line of sight
Rate of LOS indicates the angular rate of line of
sight
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Fig. 5. VarVariation of powered acceleration

12



DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION MICROFICHE

B085 DIA/RTS-2FI 1
C509 BALLOC509 BALLISTIC RES LAB 1
C510 R&T LABS/AVEADCIA 1
C513 ARRADCOM 1
C535 AVRADC4/TSARCCH 1
C539 TRASANA 1
Q592 FSTC 4
Q619 MSIC REDSTONE 1
Q008 NTIC 1
Q043 AFMIC-IS 1
E404 AEDC/DOF 1
E410 AFDUC/IN 1
E429 SD/IND 1
P005 DOE/ISA/DDI 1
1051 AFIT/IDE 1
P090 NSA/CDB 1

Microfiche Nbr: FTD96C000259
NAIC-ID(RS)T-0635-95


